Optimal Biocompatible Solvent Design by Mixed-integer Hybrid Differential Evolution
نویسندگان
چکیده
In this study, a flexible optimization approach is introduced to design an optimal biocompatible solvent for an extractive fermentation process with cell-recycling. The optimal process/solvent design problem is formulated as a mixed-integer nonlinear programming model in which performance requirements of the compounds are reflected in the objectives and the constraints. A flexible or fuzzy optimization approach is applied to soften the rigid requirement for maximization of the production rate, extraction efficiency and to consider the solvent utilization rate as the softened inequality constraint to the process/solvent design problem. Such a trade-off problem is then converted to the goal attainment problem, which is described as the constrained mixed-integer nonlinear programming (MINLP) problem. Mixed-integer hybrid differential evolution with multiplier updating method is introduced to solve the constrained MINLP problem. The adaptive penalty updating scheme is more efficient to achieve a global design.
منابع مشابه
Hybrid Coding Collaborative DE-ACO Algorithm for Solving Mixed-Integer Programming Problems
This paper presents a hybrid coding collaborative ant colony-differential evolution algorithm for solving bound constrained mixed integer programming problems. In this algorithm, a real number and integer hybrid coding strategy is used, and the population evolution is realized by colony optimization and differential evolution. It is shown by numerical experiments that the proposed algorithm is ...
متن کاملMixed-Integer Constrained Optimization Based on Memetic Algorithm
Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with local search methods. With global exploration and local explo...
متن کاملEvolutionary Neural Networks with Mixed-Integer Hybrid Differential Evolution
A novel application to the optimization of neural networks is presented in this paper. Here, the weight and architecture optimization of neural networks can be formulated as a mixed-integer optimization problem. And then a mixed-integer evolutionary algorithm (Mixed-Integer Hybrid Differential Evolution, MIHDE) is used to optimize the neural network. Finally, the optimized neural network is app...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کامل